The goal is to make it easier to program in quantum computing, which is very different from standard computing. Nvidia, the darling of high performance computing (HPC), is bringing new attention to quantum computing. The company has launched its Nvidia Quantum Optimized Device Architecture, or QODA. This hybrid platform is designed to make quantum computing more accessible by enabling programming of both quantum applications and classical applications in a single, consolidated environment. According to Nvidia, it’s aimed at speeding breakthroughs in quantum research and development across AI, HPC, health, finance and other disciplines. The aim is to make QODA be for quantum computing just as CUDA is for GPU computing – an industry standard. (CUDA is a C-like code for writing specialized HPC and AI applications that run on Nvidia GPUs.) Nvidia said HPC and AI developers can use QODA to add quantum computing to existing applications, leveraging both quantum processors as well as simulated future quantum machines using Nvidia DGX systems and Nvidia GPUs available in scientific supercomputing centers and public clouds. This is not Nvidia’s first dance in the quantum computing space. About a year ago, the company released cuQuantum, a software development kit (SDK) for accelerating quantum workflows using the Tensor Cores in its GPUs along with various libraries and tools optimized for such jobs as quantum circuit simulations. In announcing the new architecture, Nvidia has announced collaborations with a host of quantum computing firms, most with a Q in their name: hardware vendors IQM Quantum Computers, Pasqal, Quantinuum, Quantum Brilliance and Xanadu; software providers QC Ware and Zapata Computing; and supercomputing centers Forschungszentrum Jülich, Lawrence Berkeley National Laboratory and Oak Ridge National Laboratory, which is interesting because ORNL is an all-AMD shop. What is quantum computing? The processes have advanced, but the basic structure of computing has not changed since it was invented. Data is represented at its most basic state as bits, 0 or 1. Quantum computing uses something called a quibit, which can represent a 0, a 1, or any proportion of 0 and 1 in superposition of both states. A quibit can be 1/4 0 and 3/4 1, for example. This means multiple things. First, much greater speed. Quantum computing can process data at up to 1,000 times faster than standard binary computers. You’re not going to use a quantum computer to run Microsoft Excel. You’re going to use a quantum computer to do weather simulations and drug testing. Second, quantum computing has no compatibility with current applications. You’re not just going to rewrite or recompile an application on a quantum computer. You have to write the whole thing over from scratch to completely take advantage of the new architecture. No one is going to find that appealing, and that’s what Nvidia is trying to address. Fortunately, it’s not an either/or situation. Applications that will be accelerated by quantum processing units (QPU) will be hybrid workloads that leverage a standard supercomputing architecture for large parts of an application, while the most critical parts are accelerated by a quantum system. Related content news Pure Storage adds AI features for security and performance Updated infrastructure-as-code management capabilities and expanded SLAs are among the new features from Pure Storage. By Andy Patrizio Jun 26, 2024 3 mins Enterprise Storage Data Center news Nvidia teases next-generation Rubin platform, shares physical AI vision ‘I'm not sure yet whether I'm going to regret this or not,' said Nvidia CEO Jensen Huang as he revealed 2026 plans for the company’s Rubin GPU platform. By Andy Patrizio Jun 17, 2024 4 mins CPUs and Processors Data Center news Intel launches sixth-generation Xeon processor line With the new generation chips, Intel is putting an emphasis on energy efficiency. By Andy Patrizio Jun 06, 2024 3 mins CPUs and Processors Data Center news AMD updates Instinct data center GPU line Unveiled at Computex 2024. the new AI processing card from AMD will come with much more high-bandwidth memory than its predecessor. By Andy Patrizio Jun 04, 2024 3 mins CPUs and Processors Data Center PODCASTS VIDEOS RESOURCES EVENTS NEWSLETTERS Newsletter Promo Module Test Description for newsletter promo module. Please enter a valid email address Subscribe